Efficient spore synthesis in Bacillus subtilis depends on the CcdA protein.

نویسندگان

  • T Schiött
  • L Hederstedt
چکیده

CcdA is known to be required for the synthesis of c-type cytochromes in Bacillus subtilis, but the exact function of this membrane protein is not known. We show that CcdA also plays a role in spore synthesis. The expression of ccdA and the two downstream genes yneI and yneJ was analyzed. There is a promoter for each gene, but there is only one transcription terminator, located after the yneJ gene. The promoter for ccdA was found to be weak and was active mainly during the transition from exponential growth to stationary phase. The promoters for yneI and yneJ were both active in the exponential growth phase. The levels of the CcdA and YneJ proteins in the membrane were consistent with the observed promoter activities. The ccdA promoter activity was independent of whether the ccdA-yneI-yneJ gene products were absent or overproduced in the cell. It is shown that the four known cytochromes c in B. subtilis and the YneI and YneJ proteins are not required for sporulation. The combined data from analysis of sporulation-specific sigma factor activity, resistance properties of spores, and spore morphology indicate that CcdA deficiency affects stage V in sporulation. We conclude that CcdA, YneI, and YneJ are functionally unrelated proteins and that the role of CcdA in cytochrome c and spore synthesis probably relates to sulfhydryl redox chemistry on the outer surface of the cytoplasmic membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in the thiol-disulfide oxidoreductases BdbC and BdbD can suppress cytochrome c deficiency of CcdA-defective Bacillus subtilis cells.

Cytochromes of the c type in the gram-positive bacterium Bacillus subtilis are all membrane anchored, with their heme domains exposed on the outer side of the cytoplasmic membrane. They are distinguished from other cytochromes by having heme covalently attached by two thioether bonds. The cysteinyls in the heme-binding site (CXXCH) in apocytochrome c must be reduced in order for the covalent at...

متن کامل

Bacillus subtilis CcdA-defective mutants are blocked in a late step of cytochrome c biogenesis.

Cytochromes of the c type contain covalently bound heme. In bacteria, they are located on the outside of the cytoplasmic membrane. Cytochrome c synthesis involves export of heme and apocytochrome across the cytoplasmic membrane followed by ligation of heme to the polypeptide. Using radioactive protoheme IX produced in Escherichia coli, we show that Bacillus subtilis can use heme from the growth...

متن کامل

Bacillus subtilis aconitase is required for efficient late-sporulation gene expression.

Bacillus subtilis aconitase, encoded by the citB gene, is homologous to the bifunctional eukaryotic protein IRP-1 (iron regulatory protein 1). Like IRP-1, B. subtilis aconitase is both an enzyme and an RNA binding protein. In an attempt to separate the two activities of aconitase, the C-terminal region of the B. subtilis citB gene product was mutagenized. The resulting strain had high catalytic...

متن کامل

Estimation of metabolizable energy equivalency of Bacillus Subtilis spore for male broiler chickens

There are many studies on the effects of probiotics on performance of broiler chickens, but none of them has evaluated the metabolizable energy (ME) equivalency values of probiotics. The aim of this study was to determine the metabolizable energy equivalency value of Bacillus subtilis spore and its potential for decreasing feed ME content and cost. One hundred seventy-six day-old male broilers ...

متن کامل

Comparative characterization of silver nanoparticles synthesized by spore extract of Bacillus subtilis and Geobacillus stearothermophilus

Objective(s): Silver nanostructures have gathered remarkable attention due to their applications in diversefields. Researchers have recently demonstrated that bacterial spores are capable of reducing silver ions toelemental silver leading to formation of nanoparticles.Materials and Methods: In this study, spores of Bacillus subtilis and Geobacillus stearothermophilus wereemployed to produce sil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 182 10  شماره 

صفحات  -

تاریخ انتشار 2000